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Look-back policies for two-stage, pull-type 
production/inventory systems* 

M. Baykal-Giirsoy, T. Altiok and H. Danhong  

Department of Industrial Engineering, Rutgers University, Piscataway, 
NJ 08854, USA 

We consider a two-stage, pull-type production/inventory system with a known ser- 
vice mechanism at the first stage. Set-ups and start-ups are involved in the operation of 
the second stage. We develop a production control policy for the second stage, within 
the class of (R, r) continuous-review policies, that minimizes the long run average 
total cost. We use a semi-Markov decision model to obtain an optimal policy for 
the operation of the second stage. The structure of the optimal policy suggests the 
use of a suboptimal look-back policy that delays the set-up at the second stage if 
the buffer lacks sufficient raw material. The performance of the system and the aver- 
age total cost under the suboptimal policy can be obtained approximately using a 
decomposition algorithm. We show examples justifying the use of this suboptimal policy. 

1. Introduction 

This paper is concerned with the operat ion of  a two-stage, pull-type produc- 
t ion/inventory system as shown in fig. 1. It is assumed that the first stage has always 
raw material to process. Between the stages, there is an intermediate storage of  
work-in-process inventory that  operates with the well-known base-stock policy. 
That  is, the first stage produces as long as there is space in the buffer. The second 
stage produces to store in the finished-product warehouse. The demand for the fin- 
ished product  arrives at the warehouse on a random basis. It is assumed that a set- 
up cost is incurred every time product ion starts at stage 2. Moreover ,  a start-up 
charge is incurred when stage 2 becomes idle during a product ion cycle. Thus, a 
fresh start requires a set-up, and an intermediate starvation requires a start-up. 
As a result, stage 2 does not  respond to every demand arrival at the warehouse. 
Rather,  it initiates a product ion cycle when the inventory level in the warehouse 
drops to a certain value. Product ion at stage 2 continues until the inventory level 
in the warehouse reaches a target value, implying a continuous-review (R, r) policy 
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Stage 1 (R b rb) Stage 2 (I~, rw) 

Fig. 1. A two-stage, pull-type production/inventory system. 

where R is the target value and r is the reorder level. Furthermore, the production at 
stage 2 starts only if there is a sufficient amount of material in the intermediate 
buffer. This is what we refer to as the look-back policy. In the case of the lack of 
sufficient material in the buffer, the look-back policy forces stage 2 to stay idle until 
a certain amount accumulates in the buffer. 

In pull-type systems, the downstream, in the hierarchy of production control, 
being closer to the market, has the final authority on how many units to produce. 
The production schedule is usually not set a priori, but the process is triggered as 
the finished inventory level reaches a critical point. Thus, in multi-stage, pull-type 
production systems, each stage produces as much as the immediate downstream 
stage requests. The contribution of this paper is to incorporate the state of readi- 
ness (to produce) of the upstream stages into the production decision at any stage 
in a pull-type system. We show through the cost minimization arguments that 
within a general continuous-review inventory policy, due to the set-up and start- 
up costs, it may be beneficial to delay the production at stage 2 until there is a suffi- 
cient amount of material in the upstream buffer. 

Pull-type systems have been investigated in the literature. Most of the studies 
appear to be in the context of kanban systems. Kimura and Terada [18] study the 
effect of fluctuations in demand on the system performance measures. Karmarkar 
[17] conjectures about the control of pull systems and the impact of the variability 
of the inventory levels on the congestion in pull systems. Bitran and Chang [3], and 
Bard and Golany [5] extend the work by Kimura and Terada to optimize the num- 
ber of kanbans for a deterministic future demand for a period of time. 

So and Pinault [26], Buzacott [6], and Altiok and Ranjan [2] study multi-stage 
production/inventory systems where production at each stage is triggered by the 
demand coming from the immediate downstream stage. Zipkin [28] incorporates 
base-stock policies in a two-stage kanban-like production system and analyzes 
simple models to evaluate the average performance measures for various cases. 
Additional analytical models of kanban-like systems include Mitra and Mitrani 
[19], and Hopp and Spearman [16] focusing on the estimation of the average 
performance measures of tandem production systems. 

Our objective in this study is to show that in pull-type systems, it may be cost 
effective to delay the production, triggered by the downstream demand, at the stage 
where there is a lack of work-in-process inventory in the upstream buffer. The gain 
in delaying the production results from the reduced number of set-ups and start-ups 
per unit time and consequently from the reduced average set-up and start-up costs 
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per unit time. In a two-stage system, for instance, this saving may be substantial to 
drive a policy of "looking back" that checks the buffer before a production cycle 
starts at stage 2. To be able to implement our objective in this research, we have 
modeled the above problem as a semi-Markov decision problem. We present an 
algorithm to obtain the optimal policy for stage 2. The structure of the optimal pol- 
icy is quite complicated, it depends on the number of items both in the buffer and in 
the warehouse. When the set-up cost is high, the optimal policy is a type of look- 
back policy. For every warehouse state there is a buffer threshold such that stage 
2 starts working if the buffer level is higher than this threshold. The threshold 
decreases with the decreasing inventory level in the warehouse. We present some 
examples which show that the optimal policy does not have this monotone struc- 
ture in general. The structure of the optimal policy suggests the use of a look-back 
type suboptimal policy with the same threshold for every inventory level in the ware- 
house. We provide examples to justify the use of this suboptimal policy. We analyze 
the system approximately, under the suboptimal policy using a decomposition 
scheme. We give an algorithm to obtain the necessary performance measures for 
each buffer threshold and show the accuracy of the approximation method. The 
cost-minimizing buffer threshold can be obtained using the approximation method. 

2. Model description 

We consider the two-stage, single-product production/inventory system 
shown in fig. 1. All jobs are processed first in stage 1 and then in stage 2 and placed 
in the warehouse. Demand for the finished product is assumed to be governed by an 
independent time-homogeneous Poisson process with rate A. Upon arrival, a 
demand is satisfied immediately if there are units available in the warehouse. Other- 
wise, the customer leaves, incurring a lost sale cost. Let X" i denote the random vari- 
able representing the processing time at stage i = 1,2. Xi 's  are independent and 
exponentially distributed with rate #i- There is a fixed set-up cost for starting the 
production at stage 2. Later, during the production cycle, a start-up cost is charged 
if stage 2 becomes idle due to the lack of material in the buffer. A holding cost is 
charged per unit time for the inventory both in the buffer and the warehouse. 
The production at stage 1 and the inventory in the buffer are controlled by an 
(Rb, R b - l) continuous-review policy implying that stage 1 should produce as 
long as the buffer is not full. A continuous-review (Rw, rw) inventory control policy 
is used to control the inventory in the warehouse as well as the production at stage 2. 
This policy implies that if the inventory is below or equal to the reorder level rw, then 
a request for production is placed at stage 2. The production continues until the 
warehouse inventory reaches R w. The optimality of such policies in the presence 
of the start-up cost is shown for single-stage systems by Heyman [14], Sobel [25] 
and Bell [4]. 

The decision to start the production at stage 2 may depend on the sufficiency 
of the inventory in the intermediate buffer. At the moment of a production request 
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at stage 2, if there are not enough units in the buffer, stage 2 may delay its production 
until the inventory in the buffer reaches a threshold level. Below, we present a semi- 
Markov decision approach to identify the optimal production policy for stage 2. 

2.1. SEMI-MARKOV DECISION MODEL 

We observe the system at the following instances: arrival to buffer (ab) , arri- 
val to warehouse (a,,) and demand arrival (d). The state of the system at any given 
epoch is determined by the inventory levels at the buffer and the warehouse and the 
state of stage 2, which may be in one of the following states: working, waiting and 
forced-idle. It is waiting to be activated in the waiting state, and is starved due to 
the lack of items in the buffer in the forced-idle state. These states are represented 
by {0, 1,2}, respectively. If stage 2 is in the forced-idle state, and an item becomes 
available in the buffer, stage 2 goes through a start-up. 

At each transition epoch, after observing the state of the system, an action is 
chosen from a set of available actions. At each decision epoch, as long as stage 2 is 
not working, it may either start working or wait. Thus, the action space for these 
states, is d = { 1,0}, with 1 representing the start working action and 0 represent- 
ing the wait action. Due to the (Rw, rw) policy, once it starts working, incurring a 
set-up cost, it will work until the inventory reaches Rw. After reaching Rw, it 
remains idle until the inventory drops to rw. Thus, for some states the action space 
will include only one action, so as to keep producing in the active states and remain 
idle in the idle states. We represent this action by 0, meaning that the action does not 
change the state of stage 2. If stage 2 is in the forced-idle state, as soon as an item 
enters the buffer, stage 2 will start working immediately. For those states, there is 
also only one action to choose, that is the action to start working. We denote this 
action by I, meaning that this action changes the state of stage 2. 

A policy is defined as a sequence of decision rules 7r = (Tr0, 7q, . . . ) ,  where 7r m 
is the vector of probability distribution on the actions available for every state at the 
decision epoch m. A policy is said to be stationary if it has the same decision rule at 
every epoch m and this decision rule depends only on the present state. A stationary 
policy is called deterministic if there is no randomization between the actions and 
only one action is chosen in any state. 

By the above assumptions, given that the present state of the system is i and 
action a is taken, the probability that the next state is_j, i.e. the transition probability 
~aj, is known. The time spent in each state is exponential with rates depending on 
the present state and the action taken. It is well known that this is a semi-Markov 
decision process (see, e.g., Ross [21]). In fact, it is a special type of semi-Markov 
decision process, which is called the continuous-time Markov decision chain [15]. 
It is known that under a stationary policy, the state process is a continuous-time 
Markov chain, thus, at the transition epochs it has an embedded Markov chain. 

Let Ib(t ) and Iw(t) be the inventory level in the buffer and in the warehouse, 
respectively, at time t given the initial state and the policy. For notational simplicity 
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we suppress the dependence of the state variables on the initial state and the policy. 
Let S2(t) denote the state of stage 2 at time t. 

2.2. THE OPTIMIZATION PROBLEM 

The long-run average total cost includes the holding cost with rate h, the one 
time charge of set-up cost k per set-up, the one time charge of  penalty cost p per 
start-up and the lost sale cost I per lost customer. Thus, given that the initial state 
of  the system is z and the policy 7r is applied, the average total cost per unit time 
becomes 

V~ (z) = lim sup t E~ h [Ib (7-) + Iw (7-)] dT- + kK( t )  + pR (t) + lL  (t) , 
l'--*0¢9 

where E~ denotes the expectation operator with respect to policy 7r, K(t)  denotes the 
total number  of  set-ups, R(t )  denotes the total number of  start-ups and L( t )  
denotes the total number  of  customers with unsatisfied demand by time t. Notice 
that the buffer and the warehouse holding rates are assumed to be the same. 

A policy 7r* is said to be optimal if it attains the minimum cost value among 
all possible policies, i.e. 

V~. (z) = in f  V~(z) for all z. 
7r 

2.3. SYSTEM DYNAMICS 

To locate the optimal policy we define a Markov chain embedded at each 
decision epoch m, with the following state representation 

! (m)  = (I6(m), Iw(m), S2(m), E(m)) ,  

where E(m) is the event type taking values from {ab, aw, d} .  The state space is 
therefore 

5 0 = ( 0 , 1 , . . . , R b ) × { 0 , 1 , . . . , R w ) × ( 0 , 1 , 2 ) × { a b ,  aw, d }. 

Note that the first three dimensions of  the state representation is the state of  the 
Markov chain just before the transition denoted by the event type. With this state 
description, the total number  of  states and the number  of  action states in the system 
are given by 

The total number  of  states = 5Rw(R b + 1) + 2R b - rw, 

The number of  action states = (2rw + 3) (Rb - 1). 
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This state description is similar to the one used in Gopal and Stern [13]. The state 
description in Ross and Tsang [22] could also be used without decreasing the num- 
ber of  state-action pairs. 

At each decision epoch m, given that the process is in state !" and action a is 
chosen, we have 

r( / ,  a) g the expected time until the next epoch, 

c(/, a) -~ the expected cost until the next epoch, 

P iaj g the probability that the next state is j 

= P{I_(m + 1) = _ j l ! ( m )  = _/, A(m)  = a}.  

To avoid the deadlock in the system, we assume that the production at stage 2 
starts immediately when the buffer is full and the inventory in the warehouse reaches 
the reorder level. Since we have assumed the (Rw, r,,,) policy for stage 2, the states 
where stage 2 is working will have only one action available, that is to continue to 
work, denoted by action a = 0 until Iw = Rw. For example, for the states where an 
arrival of  a finished item occurs at the warehouse, _/= (ib, i,,,, 1, aw) with 
0 < i b < Rb, and 0 <_ iw < R w -  1, we have 

1 
"r(/, O) -- A + #l + #2 '  (1) 

At(i ,  O) for_j----- (i b -- 1, iw + 1, 1, d ) ,  

~o_j= #l"r(/,O) f o r _ j = ( i b - - l ,  i w + l , l , a b ) ,  (2) 

#2r(_i, O) for_j = (i6 -- 1, iw + 1, 1, aw), 

c( i_, O) = h(ib + iw)'r(/, 0), (3) 

while for the demand arrival states / = 
we have 

(i6, iw, 1, d ), with 0 _< iw < Rw, and ib < Rb,  

1 
T( / ,  0) - .,~ -~- ~1 --I-- # 2 '  (4)  

mr(i,O) 

for j = (ib, [iw -- 11 +, 1, d) ,  

for j = (ib, [iw -- 11 +, 1, ab), 

for j = (ib, [ i , , -  1] +, 1, a,~), 

(5) 

c(i_, O) = h(i  b + [ i w -  1]+)7"(/, O) + t l ( iw = 0), (6) 

where 1(.) denotes the indicator function and [x] + = max (x, 0). 
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Similarly, when stage 2 is idle, the states where rw < i., < Rw and ib < Rb will 
have only one action available, that is, to continue to be idle (action a = 0). For  
example, for the demand arrival states / = (ib, iw, O, d)  with rw + 1 < iw _< Rw, 
and ib < Rb, we have 

1 
7-(/, O) - A__#--'+ (7) 

{ ,x~-(~, 0) 
e_,.oj = u l  ~-(/, 0) 

for_j = (ib, [ iw-  1] +, 0, d ) ,  

for j_" = (ib, [ iw- 1] +, 0, ab), 

c(i_, O) = h(i b + [ iw-  1]+)7"(i, 0). 

(8) 

(9) 

For  the states where iw < rw, if there are units in the buffer, there are two 
actions available: a = 0 corresponding to the wait action, and a = 1 corresponding 
to the start working action. For example, for the arrival to the buffer states 
i_ = (ib, i,,, 0, ab) with 0 < i6 < Rb -- 1, and iw < rw, if we choose not to start, then 
we have 

1 ( 1 0 )  ~-(i, O) - ,x + ~ ' 

{ ~-(i, 0) 
60j = ul r(/, o) 

f o r j = ( i a  + l, iw, O,d) ,  

for j = (ib + 1, iw, O, ab), 

c(i_, O) = h(i b + 1 + iw)'r(i_, 0)), 

(11) 

(12) 

while, if we choose to start working, we have 

1 
- , ( 1 3 )  7"(i, 1) )~+~1 -I-~2 

AT(/, 1) 

P-/LJ = # l  T(_i, 1) 

m~-( / ,  1) 

for_j = (ib, iw, 1, d) ,  

for_j : (ib, iw, 1, ab), 

for_j = (i b, iw, 1, aw), 

c(i,  1) = h(ib + iw)'r(i, 1) + k. 

(14) 

(15) 

Clearly, choosing action 1 whenever iw _< rw corresponds to the (Rw, rw) continuous- 
review inventory control  policy. 
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If the embedded Markov chain is unichain (with a set of recurrent states and a 
(possibly empty) set of transient states) for every deterministic policy, then the semi- 
Markov decision process is said to be unichain. It is clear that the process described 
above is unichain. It is well known that for a finite state, finite action, and unichain 
semi-Markov decision process, an optimal deterministic policy exists (see, e.g. Ross 
[21], Tijms [27] and Heyman and Sobel [15]). This policy can be located from the 
following fractional program: 

min ~i_,,, c( i_, a)z( i_, a) 
~i_,a r(i_, a)z(L a) (16) 

subject to Z z(i_,a)= 1, (17) 
_/,a 

Z Pi-aJ z(i'a) = Z z(j,a), (18) 

z(_i, a) _> O, (19) 

where z(/, a) corresponds to the fraction of transition times that the state is / and 
action a is chosen, i.e. the stationary probability distribution of the Markov 
chain. With the following substitution [7, 9], 

y(_/, a) & z(_/, a) 

E i ,  a T(/ ,  a ) z ( / ,  a ) '  

the above fractional program corresponds to the linear program given below, 

min 

subject to 

Z c(i_, a)y(i_, a) (20) 
_/,a 

Z r( i ,  a)y(/ ,  a) = 1, (21) 
i,a 

Z Pi_~jy(i_,a)= Z y ( j , a ) ,  (22) 
i~ a Q 

Y(i, a) >_0. (23) 

This linear program could also be obtained using the data transformation based on 
the uniformization technique for continuous Markov chains [24] (see also Schweit- 
zer [23] for a general treatment). After finding a solution { y} to this program, the 
optimal stationary policy is obtained from, 

y(/, a) (24) P{A = al l= i} = Y~a y(i, a)' 
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Table 1 
Optimal policy. 

Light traffic 

h 1 k p Opt. cost Policy 

A = 1 0.5 0.5 0.5 0.125 2.2503 pl 
#i = l 10.0 500.0 500.0 125.0 179.0606 p2 
#2 = 2 10.0 50.0 500.0 125.0 122.0732 p3 

10.0 0.5 5000.0 1250.0 758.3884 p4 

Heavy traffic A = 2 0.5 500.0 50.0 10.0 514.9945 ppi 
#t = 2 10.0 50.0 500.0 100.0 97.9614 p2 
~2 = 1 0.5 500.0 5000.0 1000.0 578.9747 p3 

0.5 50.0  5000.0 1000.0 117.1838 p4 

for the recurrent  states _i, i.e. E a y ( _ i , a ) > 0 .  F o r  the t ransient  states, i.e. 
Ea Y(_/, a) = 0, any  arb i t ra ry  act ion which takes the t ransient  state into a recurrent  
state is opt imal .  Note  tha t  the opt imal  solut ion { y(_/, a)} will be positive for exactly 
one act ion a, for every recurrent  state. Thus,  the opt imal  policy is a determinist ic  
policy. The a lgor i thm to obta in  the opt imal  policy is given below. 

• Step 1: Genera te  the state space according to the system dynamics .  

• Step 2: Calculate ,  r ( / ,  a), P/~ and  c(/ ,  a) for  every _i and  a. 

• Step 3: Solve the linear p rog ram (20)-(23) using a l inear p r o g r a m m i n g  
method .  

• Step 4: Obta in  the opt imal  determinist ic  policy for every recurrent  state by 
ident i fying the act ions such tha t  (24) is positive. F o r  the t ransient  states 
choose  an  act ion which will take the t rans ient  state in to  the set o f  recurrent  
states. 

Table 2 
The structure of the optimal policy 

(~,Iw) pl p2 p3 p4 (~,I, ,)  pl p2 p3 p4 

(1, 3) wait wait wait wait (1, I) action wait wait wait 
(2, 3) wait wait wait wait (2, l) - wait wait wait 
(3, 3) wait wait wait wait (3, 1) - action wait wait 
(4, 3) action action action action (4, 1) - - action action 
(1, 2) action wait wait wait ( 1, 0) action wait wait wait 
(2, 2) action wait wait wait (2, 0) - action wait wait 
(3, 2) action wait wait wait (3, 0) - - action wait 
(4, 2) action action action action (4, 0) - - - action 
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Fig. 2. Policy pl, 

EXAMPLES 

Let us look at some examples with R b = 4 and R,, = 6 with r,, = 3. In this set 
of  examples, we have considered both the heavy traffic case and the light traffic case. 
For  varying values of  the cost parameters,  we have obtained the optimal objective 
function values and the optimal policies as shown in table 1. 

In table 2, the p's denote the optimal policies for each example, pl is the no 
look-back policy with the new reorder level r,. = 2. ppl  is the exact no look-back 
policy with the original rw = 3. Specifically, the optimal policies have the following 
structure as shown in table 2 where (-) implies that the probability of  being in state 
(Ib, Iw) is O, thus, denotes a transient state. 

We can use the following diagraph to present the policy structure more 
clearly. In these diagraphs, the up arrow (T) represents an arrival to the buffer, 
the left arrow 0--) represents a demand arrival and a dot (.) represents the action 
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Fig. 3. Policy p2, 
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Fig. 4. Policy p3, 

point. Figure 2 represents the policy structure for pl .  It clearly shows that, as soon 
as the inventory in the warehouse drops to 2 and there are items in the buffer, stage 2 
starts working. We call this kind of policy a no look-back policy, pl policy looks 
like the no look-back policy with the warehouse reorder level equal to 2, except 
at state (4, 3). At state (4, 3), stage 2 starts working, since stage 2 is forced to 
work whenever the buffer is full and the inventory in the warehouse reaches the 
reorder level. 

Figure 3 represents the policy structure for p2, the inventory in the buffer at 
each action state is different and the threshold value decreases with the decreasing 
warehouse state. When the warehouse state is low, stage 2 starts working to avoid 
lost sales, while for the high warehouse states, stage 2 waits until the inventory in the 
buffer reaches a certain value to decrease the number of set-ups and start-ups. 

In policy p3 (see fig. 4), stage 2 starts working when the inventory in the ware- 
house is zero and the inventory in the buffer is 3. Otherwise, stage 2 will wait until 
the buffer is full. Policy p4 is similar to p3. But, because the set-up and start-up costs 
are so high, stage 2 will not start working until the buffer is full, even when there are 
no items in the warehouse. 

In general, though, the optimal policy structure can be quite different from 
the policies that are presented previously. For example, policy p5 does not demon- 
strate a monotonic structure (see fig. 5). This policy is optimal when the same system 
and cost parameters as in the case where policy pl is optimal are used but the inven- 
tory holding cost is increased to 10. When the inventory level reaches the reorder 
level iw = 3, stage 2 starts working if the buffer level is equal to 2 or if the buffer 
is full, but it does not start if the buffer level is equal to 3. This policy structure cor- 
responds to a no-threshold policy. 

Because of the complexity of the optimal policy, we next consider a simple 
policy that is easy to implement without incurring a "much" higher cost. We refer 
to this suboptimal policy as the look-back policy. 
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Fig. 5. Policy p5. 

The look-back  policy dictates that  as soon as the inventory  in the warehouse  
drops to r,., stage 2 checks the inventory  level in the buffer.  I f  it is greater  than  or  
equal  to r*, r* = 1 , 2 , . . . ,  R h, stage 2 starts working,  otherwise,  it waits  until  the 
inventory  reaches r*. 

Clearly,  there exist Rh choices o f  r*. U n d e r  any  r policy which is a policy tha t  
assigns r as the threshold  level, the embedded  M a r k o v  chain is unichain.  Thus ,  given 
a set o f  cost parameters ,  one can calculate the opt imal  r* by 

r* = argr=l,  2 ..... R~ min V~, 

th rough  the analysis o f  the under ly ing  M a r k o v  chain.  Table  3 demons t ra tes  the dif- 
ferences between the long-run average expected cost value o f  the opt imal  policy, the 
subopt imal  look-back policy and  the no look-back policy. There  is no substant ia l  
difference between the opt imal  and the subopt imal  objective funct ion values while 
the difference between the look-back  and  the no look-back policies could be quite 
significant. 

Table 3 
The average total cost of the optimal, the look-back and the no-look-back policies, 

Opt. Subopt. No 
h 1 k p cost cost r* look-back 

Light traffic = 1 0.5 0.5 0,5 0.125 2.2503 2,2519 1 2,2519 
~i = 1 10,0 500.0 500,0 1 2 5 . 0  179,0606 18t.3235 3 183.4167 
#2 = 2 10 .0  5 0 . 0  500,0 1 2 5 . 0  122.0732 122.1016 4 128.6415 

10.0 0.5 5000.0 1250.0 758.3884 758.3884 4 845.6867 

Heavy traffic = 2 0.5 500.0 50.0 10,0 514.9945 514,9945 1 514.9945 
#1 = 2 10,0 50.0 500,0 1 0 0 , 0  9 7 . 9 6 1 4  97.9874 2 98.0088 
#2 = 1 0.5 500,0 5000.0 1000,0 578.9747 579,0528 3 579,5016 

0.5 50.0 5000,0 1000.0 117.1838 117.1838 4 118.4046 
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3. Approximate analysis of the system under look-back policy 

The pull system we have considered in this paper may be approximately ana- 
lyzed using a decomposition scheme similar to the ones developed by Altiok and 
Ranjan [1], Gun and Makowski [12], Gershwin [1 I] and Dallery et al. [8]. Our con- 
tribution here is the incorporation of the look-back policy into the approximation. 
Below, we describe the approximation method and show its accuracy. 

The approximation is based on replicating the behavior of the buffer and the 
warehouse contents in the systems that are easier to analyze. Hence, the two-stage 
production/inventory system can be decomposed into two subsystems as shown in 
fig. 6. Let us abbreviate the systems replicating the behavior of the buffer content by 
f~(1) and the warehouse content by f~ (2). 

3.1. DESCRIPTION OF f2(l) 

f~(1) is a two-stage system with an intermediate buffer of capacity R b. The 
first stage has an exponential processing time with rate #l and is always busy except 
when the buffer is full. It starts processing when Ib drops to R b - 1 .  Let 
P{I i  = k }  = Pi(k) for i = b, w, be the steady-state probability that there are k units 
in the buffer and in the warehouse, respectively, at any point in time. 

The second stage in [2 (1) has a more involved processing time. Upon process 
completion at stage 2 in the original system, if the number of items in the warehouse 

XI 

Subsystem 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ": 

X2 
Xt ~ ) _ ~ W a m h o u s ~  ~L ( ~ [  Buffer 

Two-stage production/'mventory system 

(Rb, ru, r" ) 
X2 

Buffer - ~  1-A 

Subsystem 2 

Fig. 6. Decomposition of the two-stage production system. 
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is R,., stage 2 ceases its production. The probability of this event is 

II = P{I. .  = R w -  l la departure occurs at node 2} 

Once the target level in the warehouse is reached, there have to be R,, - r~,, demand 
arrivals to occur to initiate a request for production. That is, the particular demand 
arrival that sees rw + 1 in the warehouse and reduces it to rw initiates the request for 
production. At this moment, the production starts with probability P{Ib >_ r* }. 
Otherwise, the production at stage 2 is delayed until Ih = r*. This delay may be 
interpreted as the set-up time for stage 2. Let S denote this set-up time for stage 2 
and Z denote the time that stage 2 is idle from the moment Iw reaches R,, until stage 
2 restarts its production. We call Z as the idle time, Then, 

E[z] (R,,,- ,-.) ,.. - A ~- P { I b  < }E[S], (25) 

where 

t' 

E[S] = __1 ~ kPb(r, _ k). (26) 
#1 k=l 

Let ~ = P{S2 = idle} be the steady-state probability that stage 2 is in the 
idle state. Then, II can be obtained using the renewal arguments as 

P2 (27) 
~I - E [ z ] o , _ '  

where O is the steady-state throughput in f2(2). 
Also, we know that stage 2 will be idle while Iw drops from Rw to r,,, or the 

inventory in the buffer is less than i"*. Thus, P2 can be expressed as 

I - ' _ [  

P2=(Rw-rw)P'"(R'")+ Z Pb(k). (28) 
k=O 

The processing time at node 2 of fZ(1) is defined by 

Xi2 = { X2 with probability 1 - H, (29) 

X2 + Z with probability l-I, 

with an expected value of 

1 P~ 
E [x~2] = - -  + ~ .  

#2 62 
(30) 
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The distribution of Z can be modeled by a mixture of generalized Erlang dis- 
tribution (MGE) with (1"* + 1) phases where the first phase has a rate of #2, second 
phase has a rate of A / ( R w -  rw) and all the others have the rate o f# l .  Then, f~(1) 
can be studied as an M / P H / 1 / R  b + 1 queue with a processing time of phase-type 
with ( r*+  2) phases. This queueing system can be analyzed by using matrix- 
geometric or matrix-recursive techniques (see, e.g. Neuts [20]). 

3.2. DESCRIPTION OF 9/(2) 

f~ (2) is a single-stage production/inventory system replicating the behavior of 
the warehouse contents. We analyze this system from the empty cell point of view. 
In the original system, once the production starts at stage 2 (after a possible set-up 
time), it continues until Iw = Rw. During this period, a departure at stage 2 may 
leave Ib = 0. In this case, stage 2 waits for stage 1 to eject a unit into the buffer. 
The probability of this event is, 

A & P{Ib = 0[a departure occurs at stage 2} = #1Pb(O) 
01 ' 

(31) 

where 01 is the steady-state throughput of f2(1). 
Thus, the imaginary processor producing the finished products to be stored in 

the warehouse has a processing time X21 defined by 

X2 with probability 1 - A, (32) 
X21 = )(2 + X1 with probability A, 

with an expected value of 

1 pb(o) 
E [X21] = - -  + - -  (33) 

#2 01 

Notice also that at a request for production, in order to incorporate the look- 
back policy, stage 2 has to check the inventory level in the buffer. If it is less than r*, 
stage 2 has to wait until it reaches r*. We interpret this waiting time as a start-up time 
for stage 2. The start-up time S is an Erlang random variable with c* phases. This c* 
value is determined by the inventory level in the buffer at the moment of a demand 
arrival (Poisson arrival). For example, if the inventory level in the buffer is higher 
than or equal to r*, then c* = 0. If the inventory level in the buffer is less than r*, 
then, c* = r* - lb. The probability distribution of c* can be expressed as 

Pc(J) 
P{c* = r* - J l J  < r*} - P{Ib < r*} (34) 
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Table  4 
The accuracy of  the decomposi t ion  algori thm. 

R., r,,. Rb rb r" A #! #2 ] K [. k 

10 6 6 5 1 1 1 2 Appr .  6.7946 3,8036 x 10 -2 0.07244 0.3699 
Exact 6.8232 5,3307 x 10 -2 0.07396 0.3227 

6 3 4 3 2 t 1 2 Appr.  4.4196 6.6738 x 10 -2 0.14009 0.3339 
Exact 4.2378 8.6075 x t0 -2 0.12239 0.2852 

t0 6 6 5 3 2 2 1 Appr .  6.5187 4.9906 x 10 -4 1.00491 7.81 × 10 -3 
Exact 6 .0t47 4.1695 x 10 -4 1.00467 7.66 x 10 -3 

10 6 6 5 4 2 1 2 Appr ,  t,9531 4.8112 x 10 -4 1.00456 0.5005 
Exact 1.4560 4.5395 x 10 -4 1.00403 0.5003 

A convenient  way to model  f~(2) is to assume that X21 is an MGE - 2 r andom 
variable. Consequently,  f2(2) becomes an M/PH/1/R,. queue with a start-up time 
and a threshold-service policy. That  is, the server waits until (R , , , -  rw) units accu- 
mulate. It may go through a start-up time (due to the look-back policy) and starts 
producing until the system is cleared. The units in this M/PH/1/Rw queue are the 
empty cells (holes) in the original warehouse. 

Let us briefly describe an iterative algori thm that relates f~ (1) to f2 (2), provid- 
ing approximate  values of  the steady-state measures of  the system. 

• Step 1: Initialize I-i and E[Z] = (Rw- rw)/A. 

• Step 2: Analyze f~(1) as an M/PH/1/Rb + 1 queue to obtain Pb(') and Ot. 

• Step 3: Obtain A from (31). 

• Step 4: Analyze f2(2) as an M/PH/1/R,, queue to obtain Pw(') and 02. 

• Step 5: If  102 - O~ [ < c, stop. Otherwise, obtain II f rom (27) and go to step 2. 

The above iterative procedure always converges and has an acceptable error  
level as shown in table 4. Low level of  p roduc t ion  activity tends to reduce the rate of  
convergence. The  convergence of  the a lgori thm is guaranteed according to the rea- 
soning given by Dallery and Frein [10]. 

3.3. P E R F O R M A N C E  M E A S U R E S  

From the analyses of  f~ (1) and f~ (2), we can obtain the expected values of  the 
performance measures in our  objective function as follows: 

~ = Z iPj(i), for j = b, w, (35) 
i=0  
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£ = E [  t--.~:lim L(tt) ] = A&,(0), (36) 

K = E [ ,--.~lim K(tt) 1 = AP,,,(Rw), (37) 

Notice that these measures depend on the threshold value r*. The expected number 
of lost sales per unit time is obtained by using the PASTA (Poisson Arrivals See 
Time Averages) property of the Poisson distribution. Hence, for a given set of sys- 
tem parameters and cost coefficients, we can evaluate the average total cost using 
the approximate values of the above performance measures. Table 5 shows the 
exact and the approximate values of the performance measures for varying values 
of the system parameters. The accuracy of the approximation is quite reasonable. 

In table 5, we compare the exact and approximate values of r* and the asso- 
ciated average total cost. The results appear to be highly satisfactory with a relative 
error range of (0.0023, 0.1677) in the total cost. Considering the practicality of the 
sub-optimal policy with respect to the complexity of the optimal policy, one may 
prefer to live with the above error level. 

4. Justification of the look-back policy 

In this section, we will briefly justify the use of suboptimal policy by making 
reference to the parameters of the approximation. Let us choose two values for r* 
namely q* and r~ such that 

q* < r~ _< Rb. 

Table 5 
The comparison of  the exact and the approximate values of  r*. 

h 1 k p Exact r* V (exact) Appr. r" V (appr.) 

A = 1 0.5 0.5 0.5 0.125 I 2.2519 4 2.2021 
~ = 1 10.0 500.0 500.0 125.0 3 181.3235 I 188,8067 
#2 = 2 10.0 50.0 500.0 125.0 4 t22.10t6 4 120.9519 

10.0 0.5 5000.0 1250.0 4 758.3834 4 760.1205 

A = 2 0.5 500.0 50.0 10.0 1 514.9945 2 509.5881 
#~ = 2 10.0 50.0 500.0 100.0 2 97.9874 4 t00.8751 
#2 = 1 0.5 500.0 5000.0 1000.0 3 579.0528 4 554.0160 

0.5 50.0 5000.0 1000.0 4 117.1838 4 97.5359 
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We can write down the expected total cost expression as follows: 

Vr. = h]b(rT) + hI-w(ri*) + lAP,,.(0, r*) + kAP, v(R,,., r,) +pO(ri*)A(ri* ). (39) 

Hence, an analysis of the cost expression that shows 

V,,. > V,,. 

may justify the look-back policy. 
As r* strictly increases, clearly E [S] increases which in turn increases E [Z] as 

apparent from (25)-(26). Hence, from (30) we can write 

e[x,2, ,-,*] < E[x,2, ,-_;1, 

which results in 

ib(r;) < ib(";_). 

This can be shown not only by treating f2 ( 1 ) as an M / M / 1 / N  queueing system, but 
also becomes intuitively correct. 

A simple argument can be used for iw. Since 6 drops down as r* increases, the 
finished-product input rate to the warehouse decreases whereas the demand rate 
remains the same and consequently the average contents of the warehouse 
decreases, that is, 

The number of set-ups per unit t ime/ (  decreases as r* increases, 

k(,-,*) >/~(,._:). 

As r* increases, clearly P~,.(0) increases (the warehouse will be emptier) and 
consequently, 

0 = [1 - Pw(0)] A, 

decreases. Meanwhile, as r* increases, A (the probability that stage 2 is starving) 
decreases. Thus, the number of start-ups per unit time/~ shows the following behavior: 

k(,-~*) > k(,-~). 

Finally, as r* increases, P,,.(0) increases so that the number of lost sales per 
unit time £( t )  shows, 

£(,.,*) < £(r~). 
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We can combine the above arguments in the average total cost expression: 

Vq - ~: = h [ l b ( r ~ )  - ib(r;)] + h[iw(r~)  - i w ( r ; ) ]  

+ IA[ P,,,(O, r~*) - P,,,(O, r;)] + k[£(r~*) - K(r;)] 

+ p [O(r~ ) A(r~  ) - 6(r ;  ) A ( r ;  )]. (40) 

It is clear that, under any circumstances, r* can be chosen so that (40) becomes posi- 
tive. The magnitude of (40) closely provides a threshold for r* to justify the look- 
back policy. Obtaining explicit expressions for the differences in (40) are outside 
the scope of this paper. 
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